skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Wenyao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bacteria experience substantial physical forces in their natural environment including forces caused by osmotic pressure, growth in constrained spaces, and fluid shear. The cell envelope is the primary load-carrying structure of bacteria, but the mechanical properties of the cell envelope are poorly understood; reports of Young’s modulus of the cell envelope of E. coli are widely range from 2 MPa to 18 MPa. We have developed a microfluidic system to apply mechanical loads to hundreds of bacteria at once and demonstrated the utility of the approach for evaluating whole-cell stiffness. Here we extend this technique to determine Young’s modulus of the cell envelope of E. coli and of the pathogens V. cholerae and S. aureus. An optimization-based inverse finite element analysis was used to determine the cell envelope Young’s modulus from observed deformations. The Young’s modulus of the cell envelope was 2.06±0.04 MPa for E. coli, 0.84±0.02 MPa for E. coli treated with a chemical known to reduce cell stiffness, 0.12±0.03 MPa for V. cholerae, and 1.52±0.06 MPa for S. aureus (mean ± SD). The microfluidic approach allows examining hundreds of cells at once and is readily applied to Gram-negative and Gram-positive organisms as well as rod-shaped and cocci cells, allowing further examination of the structural causes of differences in cell envelope Young's modulus among bacteria species and strains. 
    more » « less
  2. Abstract Mechanosensitive mechanisms are often used to sense damage to tissue structure, stimulating matrix synthesis and repair. While this kind of mechanoregulatory process is well recognized in eukaryotic systems, it is not known whether such a process occurs in bacteria. InVibrio cholerae, antibiotic-induced damage to the load-bearing cell wall promotes increased signaling by the two-component system VxrAB, which stimulates cell wall synthesis. Here we show that changes in mechanical stress within the cell envelope are sufficient to stimulate VxrAB signaling in the absence of antibiotics. We applied mechanical forces to individual bacteria using three distinct loading modalities: extrusion loading within a microfluidic device, direct compression and hydrostatic pressure. In all cases, VxrAB signaling, as indicated by a fluorescent protein reporter, was increased in cells submitted to greater magnitudes of mechanical loading, hence diverse forms of mechanical stimuli activate VxrAB signaling. Reduction in cell envelope stiffness following removal of the endopeptidase ShyA led to large increases in cell envelope deformation and substantially increased VxrAB response, further supporting the responsiveness of VxrAB. Our findings demonstrate a mechanosensitive gene regulatory system in bacteria and suggest that mechanical signals may contribute to the regulation of cell wall homeostasis. 
    more » « less